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ABSTRACT 

 

Collecting data for traffic simulation modeling applications is expensive. Data collected 

using traditional methods may not represent the variations in traffic demands and conditions 

throughout the year and may require additional efforts to compensate for missing and 

erroneous data. This paper discusses a series of data manipulation procedures for the 

utilization of ITS data archives to support simulation modeling. These procedures allow the 

extraction of collected volume data from ITS data archives, automatic identification of 

temporal patterns in the data, automatic segmentation of daily demands into dynamically 

captured sub-periods, resolving possible spatial inconsistencies in the data, and estimating 

missing volumes.  
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1. INTRODUCTION 

Traditionally, traffic simulation applications have been developed using volume data collected 
using tube and/or manual turning volume counts.  These applications are calibrated using data 
from travel time studies combined with volume data and field observations of queues and other 
traffic conditions.   The collection of the required data, however, is expensive, particularly for 
large simulated systems. In addition, the data collected using traditional methods are normally for 
one or few days that may not represent the traffic demands and conditions throughout the year. 
 
Intelligent Transportation Systems (ITS) agencies have used devices as traffic detectors, closed 
circuit television cameras (CCTV), electronic toll readers, and license plate readers to collect 
traffic parameter measurements for operational purposes.  In recent years, these agencies have 
started archiving the data collected by these devices (FHWA, 2004).   Because ITS detectors and 
communicators are already in place to collect data for operational purposes, the extra cost to 
archive and manage the data is relatively low.  As ITS data archives become more widely 
available, the utilization of such archives for the development and calibration of simulation 
applications will be an attractive option. This utilization will provide a significantly lower cost 
and a more efficient data collection method compared to traditional methods and will increase 
safety by reducing the need for personnel to go out to the field for data collection purposes.  
 
The additional details provided by the ITS data, both in time and space resolutions, will allow 
better representations of real-world environments in simulation applications.  For example, the 
use of archived ITS data will allow the simulation of seasonal variations in traffic, special events, 
accidents, work zones, weather events, other types of incidents, and incident management 
strategies.   This paper discusses the development of procedures and tools for the utilization of 
data from the ITS data archives to support the use of simulation models.   
 
 
2. PREVIOUS EFFORTS 
 
Few studies have investigated the use of archived ITS data for simulation modeling applications.  
Gomez (Gomez et al, 2004) presented a procedure for constructing and calibrating a detailed 
model of a freeway, based on detector data using VISSIM.  Field data used as input for the model 
was compiled from two separate sources: loop-detectors on the on-ramps and mainline, stored in 
a central database referred to as the Performance Measurement System (PeMS) and a manual 
survey of on-ramps and off-ramps.  Gaps in both sources made it necessary to use both traffic 
detector data and manually collected data sets. A data processing algorithm was implemented to 
filter, aggregate, and correct the PeMS data. 
 
Barcelo (Barcelo et al, 2002 and Barcelo et al, 2003) described an implementation of a 
microscopic simulation tool (AIMSUN) to support traffic management strategies.  The project 
integrated an ITS data warehouse with the AIMSUN modeling environment.  This integration 
allowed the analysis and fine-tuning of traffic management strategies.   
 
Xin (Xin et al, 2006) proposed a methodology for checking and correcting temporal errors 
integrated with an optimization-based algorithm for reconciling spatial inconsistencies in traffic 
counts collected using traffic detectors.   First the data is filtered using a time-series model to 
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detect outliers. The time model is fitted based on a number of stations randomly selected from a 
freeway network. In a second step, volumes are corrected when the difference between adjacent 
stations exceed a given threshold. The volume correction is achieved by minimizing the 
difference between the observed and corrected volumes for a set of spatially related stations.  
 
 
3. PROVIDED FUNCTIONALITIES 
 
The use of ITS data that covers a long period of time provides the opportunity to classify the days 
throughout the year into different patterns.   For example, on certain corridors, it may be 
important to differentiate between different seasons or to simulate days with special events.  In 
addition, it is necessary to exclude days with unusual demands or congestion when simulating 
typical day patterns.   Thus, a procedure was developed to categorize the demand data for 
different days into patterns based on the similarity of travel demands measured by the traffic 
detectors. 
 
ITS data can include inconsistent, non-balanced, and missing measurements.  Thus, a procedure 
was developed to produce consistent and balanced traffic demands and to estimate missing traffic 
demands based on measured demands.    Another provided functionality was the automatic 
segmentation of the time period for each identified patterns into sub-periods of similar demands.   
The details of the procedures developed in this study to implement the required functionalities are 
discussed in the following section. 
 
 
4. DEVELOPED TOOL 
 
The section presents a discussion of the developed modules that deliver the functionalities 
identified in the previous section. 
 
 
4.1. Identification and Selection of Simulated Patterns 
 
A module was developed to categorize the demand data for different days into patterns based on 
the similarity of the time series of volume counts of different days.  The k-means clustering 
algorithm (Alpaydin, 2004) was used for the categorization.  The analyst can specify all or a 
subset of the detector measurement to be used in the categorization.  This is an iterative 
partitioning algorithm that minimizes the sum of time series distances to cluster centroids, 
summed overall clusters.  In this study, the times series distance is measured by the Euclidian 
distance defined as follows: 
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where 
 

)( ij tv   = time series measurement j at time interval i from STEWARD, 
)( ik tc   = centroid of cluster k at time interval i, and 

kn   = total number of time series in cluster k. 

 
The optimization routine used in the clustering algorithm achieves a local optimal that can be 
different each time the algorithm is run depending on the starting point of the optimization. The 
starting point is a set of centroids that will be serve as initial centroids in the first iteration of the 
algorithm. This set is chosen randomly from the data available. The number of centroids in the 
set is equal to the number of clusters requested by the analyst. Thus, the analyst should run the 
algorithm for a number of replications to associate the measured daily demands with the clusters.  
The results presented in this paper are based on 10 replications of the algorithm. 
 
With the developed module, the analyst has the option of specifying the number of clusters that 
result from the analysis.  Figure 1 shows the results of applying the data selection procedure to a 
set of 40 days using different number of clusters. Figure 1 contains 4 hours of data reported every 
5 min. The initial dataset contains weekdays; weekends; and days with incidents, bad weather, 
special events, and detector malfunctions. Of course, the more clusters are used the more 
homogeneous each cluster will be.   However, too many clusters will not be useful since the 
analyst´s aim in most cases is to identify major differences in the patterns to be able to simulate a 
limited number of patterns.   Figure 1 shows the results of the clustering when specifying two, 
four, and ten as the number of patterns resulting from the clustering procedure.   As can be seen 
from Figure 1-a, specifying two patterns is not sufficient, since the algorithm basically classifies 
the days into a weekday and a weekend pattern.   Figure 1-b shows the results of requesting four 
patterns to be produced.  The procedure was able to classify the patterns in two different weekday 
clusters.  The first cluster from the left in Figure 1-b represents higher demand weekdays 
compared to those days represent by the second pattern from the left in the figure. The third 
pattern from the left represents incident days and the fourth pattern represents weekends. Figure 
1-c shows the results of the analysis when ten patterns are specified.  A visualization routine was 
also included in the developed tool to allow the analyst to associate each pattern with specific 
days.  This allowed the determination of the reasons for the difference in the patterns such as 
different seasons, different weather, special events, different incident attributes, and so on.  By 
examining the resulting patterns and the associated information, the analyst can determine what 
cluster to use in the analyses, which days should be excluded as outliers, and which clusters 
should be divided further into sub-clusters.  For example, based on the data included in Figure 1, 
the analyst may decide to simulate two weekday patterns and one heavy weekend day pattern.  In 
addition, the analyst may want to classify incident days further into different incident categories 
and use these days in calibrating simulation models for incident conditions.  It is interesting to 
note that the second pattern from the left in Figure 1-c does not have any detector measurements.  
This pattern represents days with malfunction of the detection station at this location. 
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Figure 1: Results of clustering using different number of clusters. (a) Two clusters. (b) Four 
clusters. (b) Ten clusters.  Vertical axis is traffic volume per 5 min and horizontal axis is time in 

minutes 

 
(a)  

 
(b)  

 
(c)  

 
4.2. Time Period Segmentation 
 
Microscopic simulation requires segmenting the day into discrete time intervals.  Traditionally, 
analysts have divided the day into intervals that represent different peak periods during the day 
(e.g., AM, PM, and midday).   These periods are then simulated separately.  The analysts can also 
subdivide the peak period into subintervals to account for the variation in demands within the 
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peak period. Most microscopic simulation tools allow coding sub-intervals to be ran in the same 
run.  With more detailed data available from the ITS archives, it is useful to automate this 
segmentation of the time periods.  
 
A procedure was developed in this study to segment the 24 hour or peak period volumes based on 
the measurements from all or a subset of the detection stations.   The segmentation was done 
using an algorithm referred to as the Bottom-Up algorithm that has been used in data mining for 
linear piece wise segmentation (Keogh et al, 2001).  First, the Bottom-Up algorithm creates the 
finest possible approximation of the time series, therefore n segments are used to approximate the 
n-length time series. Next, the cost of merging each pair of adjacent segments is calculated, and 
the algorithm begins to iteratively merge the lowest cost pair until a stopping criteria is met. The 
analyst should decide on the stopping criteria based on the number of segments appropriate for 
the purpose of the analysis, and the quality of the data. 
 
The number of segments to represent the time series can be selected by the user.   There is a 
trade-off between the number of segments and the complexity of the developed simulation 
application.  So, it is desirable to select the lowest number of segments that capture the main 
temporal variations in demands.  
 
4.3. Spatial Conciliation and Estimation of Missing Demands 
 
Although most ITS databases implement data filtering and imputation methods, it was found that 
inconsistencies between adjacent detector measurements still exist.   In addition, in many cases, 
detectors are not placed on the ramps.  Thus a procedure was developed to resolve 
inconsistencies and non-balanced traffic between upstream and downstream detectors and to 
estimate missing link measurements (on the ramps with no detectors) based on other link 
measurements.   
 

the following segment: 
 

 
 
where 
 

t   = period of time, 
zx   = length of the section z, 

ziq ,   = average flow at location i in section z during t , 

zjq ,   = average flow at j in section z during t , 

zk   = average density in section z during t , 
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zkI ,   = average in-flow at ramp k in section z during t , and 
zlO ,   = average off-flow at ramp l in section z during t . 

 
The conservation equation results in the following equations: 
 

    (3) 
 

   (4) 
 

With all variables are as defined above.  This equation is applied between every two consecutive 
detection stations.   Further, we introduce in the formulation error terms to account for errors in 
detector measurements of volume and occupancy resulting in the following formulation: 
 

zlzlzkzkzjzjzizizzzzz ,,,,,,,,     (5) 
 
where 
 

zx,   = flow correction at location x in section z, and 
z   = density (occupancy) correction in section z during period X. 

 
For steady state conditions (where no queue occurs), the problem can be simplified assuming that 
the density in section z does not vary significantly during resulting in the following: 
 

jijizz            (6) 

 
Thus the conservation equation becomes: 
 

, z    (7)  
 
It is possible to formulate several optimization criteria to minimize the error values 

and )(tz  (Hillier et al, 2004). Three different formulations of 
quadratic error summation minimization and linear programming optimization were investigated.  
The first summation minimizes the squares of all error corrections subject to complying with all 
conservation equations of the system and constraining all corrections to a reasonable maximum 
and minimum pre-defined values.   The second formulation is similar to the first formulation but 
the error corrections are weighted by the original volumes.  The third is a linear programming 
problem that minimizes the maximum correction. Testing revealed that the results from the first 
formulation results were as good or better than the other two formulations, thus it was used for 
the rest of this study. This formulation is as below: 
 
Minimize 
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The above formulation was also extended to cases where additional information is available from 
other sources, which possibly have different levels of reliability than the ITS data. Such sources 
may include short term counts, previous corridor studies, or old tube counts.  In these cases, the 
analysts will have the option to assign weights to different information to account for their 
different levels of reliabilities.  
 
During testing of the above model, it was determined that the results from the optimization 
should be examined to determine if there are large volume corrections due to measurements at 
one or two locations that are clearly not consistent with other measurements in the system.  In 
this case, it is advised to take the measurements at these locations out of the optimization model.  
This will be illustrated using the case study presented later in this document. 
 
The correction of the inconsistencies and non-balanced volumes must account for recurrent 
bottleneck locations that prevent a portion of the demand from being served during a given time 
period.  In these cases, the counts from the data archives may not actually represent the actual 
demands but volumes constrained by downstream bottleneck throughputs.  A procedure was 
developed to approximate the demand for the ramps and mainline locations affected by the 
bottlenecks during the constrained demand periods.  The procedure first detects the presence of 
bottleneck and the affected locations.  In addition, it identifies the time period during which the 
demand is constrained (traffic is queuing) and the time period during which the queue is 
dissipating.  The sum of the volumes during these periods represents the total demands.                              
The challenge is to distribute these demands among the sub-periods (e.g., 15 minute intervals) 
during the queuing and queue dissipation periods.  One of three options are given to the analysts: 
the assumption of linear increase and decrease in traffic flow (triangular pattern) during the 
period, as shown in Figure 2; inputting the distribution of demands as the proportions of demand 
for each sub-period during the queuing and queue dissipation periods; or allowing the model to 
automatically specify these proportions based on measurements at detector locations specified by 
the user. 
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Figure 2: Ramp volume correction 
 

 
 
 
5. CASE STUDY 

 
The feasibility of using ITS data to develop microscopic simulation applications was tested using 
a freeway corridor equipped with ITS devices including traffic detectors and CCTV cameras.  
The traffic corridor is the eastbound section of State Road (SR) 826, also known as the Palmetto 
Expressway, located in Miami, Florida. This corridor includes six interchanges and begins a 
quarter mile west of the NW 67th Avenue interchange and ends a quarter mile east of the NW 
12th Avenue interchange with a total length of 6.5 miles. This study focus is on the AM period 
between 5:00 and 10:00 AM and the PM period between 4:00 and 6:00 PM.  
 
 
5.1. Data Collection 
 
Volume, speed, and occupancy data were collected from the STEWARD ITS data warehouse.  
These parameters were measured by true presence microwave detectors located at 0.3-0.5 mile 
intervals on the test section.   In total, there are 21 detectors on the eastbound direction of SR 826. 
The data were downloaded at the 5 minute aggregation level. 
 
5.2. Pattern Selection 
 
This section presents a comparison between four options to demonstrate the use of the pattern 
selection procedure. Figure 3 shows a comparison between four cases two consecutive hours 
during the PM peaks (4:00 PM to 6:00 PM).  The first case uses the average of three consecutive 
day volume measurements collected in random from STEWARD.  In the second case, the 
average of only two of these three days was used to exclude one day that seems to involve an 
incident conditions based on manual inspection of the data.  The other two options utilize the 
pattern selection procedure with 22 days and 44 days, respectively.     For these two options, the 
pattern selection procedure identified 16 days and 33 days belonging to a typical recurrent traffic 
pattern cluster.   This indicates that for this corridor, the volumes on 30% of the days are non 
typical and should not be included when estimating the average typical demands on the corridor. 

P 

CONSTRAINED OPERATION AND QUEUE DISSIPATION 

Traffic 
Volume  

veh. 

RAMP VOLUME AS REPORTED BY STEWARD 

ESTIMATED RAMP DEMAND 

TIME DEPENDANT RAMP CORRECTION 

Time 
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It can be seen that using a larger sample provide a more stable estimation of the average volumes. 
This stability helps in obtaining better data for the other procedures of this study. 

 
Figure 3: Average volumes based on different cases 
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5.3. Period Segmentation 
 
The five consecutive hours during the AM peaks (5:00 AM to 10:00 AM) were segmented using 
the period segmentation procedure mentioned earlier in this paper.   Figure 4 shows a comparison 
of using four, six, eight, twelve, and twenty segments in the segmentation procedure.   Based on 
the results, the analyst can select the appropriate period segmentation based on the scope of the 
analysis.  
 

Figure 4: Time segmentation based on volumes 
Time Segmentation AM Peak (05:00-10:00) at Detector 610411
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It is interesting to quantify the difference in performance between the segmentation of a time 
series into different number of segments using the segmentation algorithm developed in this 
study versus a baseline segmentation, in which the length of each subinterval is fixed at 15 
minutes without using the segmentation procedure.   This performance was assessed using data 
for the two PM peak hours from one detector station on SR 826. Eight, six, and four segments 

CASE 4 CASE 2 CASE 3 CASE 1 

20 SEGMENTS 4 SEGMENTS 12 SEGMENTS 8 SEGMENTS 6 SEGMENTS 
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were requested for this data using the segmentation algorithm. The algorithm produced variable 
periods ranging from 10 min to 40 min. 
 
As a measure of the quality of the segmentation, the sum square error between the segmented 
series and the original STEWARD data is calculated as follows: 
 

2

i
iiii      (9) 

where 
 

)( itv  = time series volume value at time interval i from STEWARD, and 
)( itr  = average volume value for the resulting time segment that represent the volume of the 

segment that covers interval i. 
 
Figure 5 shows a comparison between different approximation strategies, particularly it is shown 
that using a higher number of periods improve the quality of the segmentation. Requesting eight 
segments in the segmentation algorithm produced significantly lower error compared to the other 
numbers of segments. It is interesting to see that using the four segments produced by the 
developed segmentation procedure was able to achieve the same error as that obtained using eight 
consecutive 15 minute period without using the segmentation procedure.  The algorithm with 
eight segments produced a 34% reduction in the error compared to using eight segments with 
consecutive 15 minute period. Table 1 provides the Mean Square Error and the Correlation Factor 
f or each approximation. 
 

Figure 5: Square error comparisons for different approximation strategies 
Segmentation Error for Different Strategies
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Table 1:  Mean Square Error and Correlation Factor 

 Agg. 15 min Segmt-8 Segmt-6 Segmt-4 
Mean Square Error 6534 4287 5093 6613 
Correlation Factor 0.93 0.94 0.92 0.90 
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5.4. Spatial Conciliation and Missing Demand Estimation 
 
The spatial conciliation procedure was used to correct inconsistencies between traffic detector 
measurements and to estimate missing volumes.  On SR 826, traffic detectors are available at 0.3 
to 0.5 mile intervals on the mainline.  However, there are a number of ramps that do not have 
detectors.  At other ramps, the locations of the detectors do not allow accurate measurements of 
the volumes.  Fortunately, the detection stations on the mainline were located such that each ramp 
volume can be calculated as the difference between the volumes of the upstream and downstream 
link volumes.   The following cases were compared: 
 

 In Case 1, volume measurements from both mainline and ramp locations (where available) 
were used.  

 In Case 2, ramp count measurements were not used.  Rather, these measurements were 
calculated based on upstream and downstream locations.  

 Case 3 is an extension of Case 2, where main line detector station 610011 was removed 
from the optimization model, as discussed later in this section. 

 
Sensitivity analysis showed that data collected for only few days (e.g. three days) exhibits 
significant inconsistencies between detector locations and required significant corrections. Using 
longer periods of time (data from 30 and 60 days) reduced the inconstancies significantly and 
produced better results (see Figure 3). As can be seen from Figure 3, in cases 1 and 2 where two 
to three days were used, the data showed unrealistic peaks. These peaks were not observed when 
more days were used as cases 3 and 4.  Thus, 60 day data was used in this study. 
 
Figure 6 shows the results of using only mainline detectors results, namely  Case 2.  From the 
results, it appears that the correction of the volumes on the mainline is less than 12% on the 
mainline in most cases.   Also it can be seen that most corrections occurred in the second half of 
the corridor.  Most of the corrections for the ramps occur for the last four on-ramps.  The 
volumes for these ramps were reduced significantly during the correction process.   Further 
examination indicates that this is due to the lower volume measurements than expected at the last 
mainline detector location.   For this reason, the spatial conciliation algorithm decreased the 
volumes on the on-ramps to reduce the total upstream arrivals at this location.  It also increased 
the volume significantly at this last detector location. 
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Figure 6: Mainline and ramp volume corrections for case 
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Figure 7 shows the results of Case 3, in which this last detector station which has significant 
inconsistency with the rest of the system was removed from the optimization. Notice how 
removing this detector station reduces the correction needed in adjacent stations. Manual counts 
for a short period of time confirmed that the last detector had data quality problems.  The above 
results indicate that it is useful for the analyst to examine the results and revise the inputs to the 
optimization process, if the results from the optimization show significant corrections due to one 
or two suspicious detection station measurements. 
 

Figure 7: Mainline and ramp volume corrections for case 3 
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The results presented above also provide additional insights regarding the impacts of data quality 
reported by the data warehouse. If significant errors remain in the data, the quality of the results 
will be affected.   Further research is needed to determine the minimum data quality requirement 
to produce acceptable results.  
 
 
6. CONCLUSIONS  
 
This paper has illustrated the development and application of a series of data manipulation 
procedures for the utilization of ITS data archives to support simulation modeling.  The 
procedures allow the extraction of collected volume data from ITS data archives, automatic 
identification of temporal patterns in the data, automatic segmentation of daily demands into 
dynamically captured sub-periods to best fit the variations in the demands, resolving possible 
spatial inconsistencies in the data, and estimating missing volumes.  The developed procedures 
have been implemented as an automated tool for simulation model generation.  The tool provides 
a graphic interface for end users to download data from the STEWARD data warehouse, identify 
and select ideal traffic patterns, perform segmentation on traffic demands, conduct spatial 
conciliation to reconcile data inconsistency and estimate missing volumes, and generate new 
simulation model files based on the purified data.  The procedures and the developed tool can 
easily be adapted by other traffic agencies to interface with their ITS data archives.  Although the 
main objective of the developed procedures and the tool is to produce data for microscopic 
simulation applications, they can also be used to support other applications such as macroscopic, 
mesoscopic, and demand forecasting modeling applications. 
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